1. Introduction

The time constant T_2 is the transverse or spin-spin relaxation time. Any process that causes loss of magnetization on the x-y plane contributes to T_2 . The magnetization follows an exponential decay:

$$\mathbf{M} = \mathbf{M}_0 \mathbf{e}^{-t/T_2} \tag{1}$$

However, the inhomogeneity of the static field also causes a loss of the transverse magnetization, which is written as T_2^* . Since spin echoes remove the effects of inhomogeneity, the time constant that results from the decay envelope of a series of spin echoes approachs the real T_2 . The classic experiment for this purpose is the Carr-Purcell-Meiboom-Gill (CPMG) experiment.

(Method 2)

2. Pulse sequence

In general, data acquisition time required for spectral resolution is longer then the delay between two π pulses required to cancel inhomogenity. Method 1 is only suitable for samples that result in one peak. Figure 2 shows a more general approach to implement CPMG. Again, a series of echoes is generated after the 90° pulse, but the signal is acquired only at the center of the last echo. The number of loops and thus number of echoes is given in a 2D table. Consequently, the specta with different numbers of echoes are stored as rows in the 2D matrix.

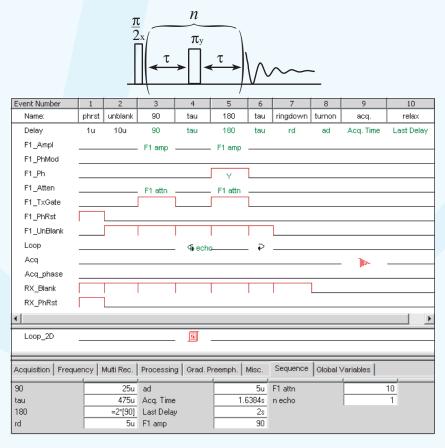


Fig. 3 The CPMG pulse sequence for Method 2.

T₂ Measurements (II)

3. Experiment and results

Sample: dibromopropionic acid in D_6 -benzene 90° pulse = $25 \mu s$

 $\tau = 475 \,\mu s$

Max. number of echoes: 74

Data procesing:

- 1. Locate the cursor on the peak for T_2 calculation.
- 2. Open the NTNMR data Analysis window, and select "Auto" mode to input "X Values".
- 3. Select "Real" for the real part of the FT data and "Intensity" as "Y Values", and click "Draw".

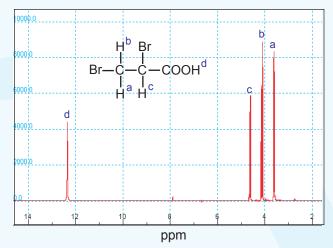


Fig. 2 ¹H NMR spectrum of dibromopropionic acid.

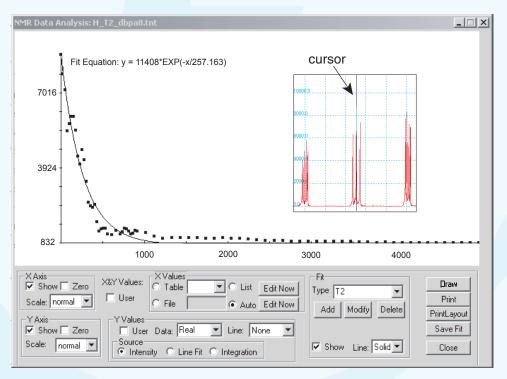


Fig. 3 NMR data Analysis window showing the T_2 fitting for dibromopropionic acid and $T_2 = 258$ ms. Insertion: Part of the spectrum of dibromopropionic acid. The cursor is located at a peak, and its intensity is used for T_2 fitting.

4. Reference

1. Derome, A., "Modern NMR Techniques for Chemistry Research", Pergamon Press, New York, 1987.

OWZ 04/08/2002

